

1 | P a g e

Integration Guide
Version 1.25

Last update 20210911

2 | P a g e

Contents
1. mobicred Usage & Integration Requirements .. 5

2. Application Page Redirects ... 8

3. Product Interest Rate .. 8

4. Web Service Overview .. 9

4.1 What is a Web Service? .. 9

4.2 SSL Access ... 9

4.3 Building a valid URL .. 10

4.4 Processing Responses .. 11

4.5 Processing XML with XPath .. 11

4.6 Processing JSON with Javascript .. 16

5 mobicred API Calls .. 17

5.1 Purchase Create ... 17

5.2 Purchase OTP ... 18

5.3 Purchase Pre-Authorise.. 18

5.4 Purchase Cancel ... 19

5.5 Purchase Approve .. 19

5.6 Purchase Refund .. 20

5.7 Purchase Query .. 21

5.8 Get Current Interest Rate ... 22

5.9 Web Hook ... 23

6 Code Samples .. 26

6.6 PHP ... 26

6.7 .NET .. 27

6.8 JAVA CODE ... 30

7 Service Codes .. 33

3 | P a g e

Revision History

Version Date Changed By Comments / Reason

1.0 01/06/2013 MAS/AMP Created

1.1 24/06/2013 MAS - Updated sequence diagrams

 - Added additional error return codes

1.2 25/06/2013 MAS - Renamed pur_auth and pur_capture calls to purPreAuth and purApprove
respectively

1.3 26/06/2013 MAS - Updated service codes

 - Updated formatting

1.4 11/07/2013 MAS - Added new OTP service codes

 - Added notes for purCreate and purOTP calls

1.5 25/07/2013 MAS - Updated purQuery response parameters

 - Added new response codes

1.6 01/10/2013 AMP - Code samples amended

1.7 08/04/2014 MAS - Added Javascript code samples

- Added notes on verified and unverified accounts

- Amended and added URL examples

- Added notes column in response codes section

1.8 05/06/2014 MAS - Updated redirect application URL formatting

1.9 21/07/2014 MAS - Updated entire guide to cater for 1 Step transaction processing (purApprove
& purCancel removed)

1.10 30/07/2014 MAS - Amended URL in PHP sample code

1.11 22/08/2014 MAS - Added Product Interest Rate API

1.12 04/09/2014 MAS - Added notes to redirect URL section

- Updated formatting

1.13 13/10/2014 MAS - Added further notes to redirect URL section

1.14 12/06/2015 AMP - Changed PHP sample code

1.15 16/07/2015 AMP - Added Web Hook API basics

- Changed Application Page Redirects URL

1.16 21/04/2016 AMP - Added clearer OTP explanation

1.17 09/08/2016 AMP - Added HTTPS POST parameter encryption explanation

1.18 11/01/2017 AMP - Added response codes 003 & 004

1.19 06/02/2017 AMP - Changed Application Page Redirects URL

1.20 14/05/2017 AMP - Added more purQuery purchase state detail

- Added response code 102 - Purchase Cancelled OK

1.21 2018/03/29 MOB - Update URL to cgi

1.22 2019/07/17 AMP - Added purQuery response status & code

4 | P a g e

1.23 2019/07/18 MOB - Purcancel

1.24 20200928 MOB - Refund Reversal

1.25 20210911 MOB - URL Update

This document describes the detailed implementation requirements for mobicred Web Services, including

how to configure the necessary web service requests and parsing the responses.

1. mobicred Usage & Integration Requirements

2. Application Page Redirects

3. Web Service Overview

4. mobicred API Calls

5. Code Samples

6. Service Codes

5 | P a g e

1. mobicred Usage & Integration Requirements
At time of integration, the merchant will be provided with 3 sets of credentials:

1. An API username and password to be used to authenticate the merchant’s API requests to

mobicred (TEST and subsequently LIVE once signed off)

2. A Merchant ID and Key for each business unit under the merchant umbrella (TEST and

subsequently LIVE once signed off)

3. A customer account username and password (TEST only)

The merchant must also supply mobicred with their LIVE and if required, TEST, IPs which will be used to

restrict access to the APIs.

CI and branding guidelines will be supplied by the mobicred sales team, and once the merchant has

demonstrated that their integration is complete from both a technical and aesthetic/user experience

perspective, will mobicred provide LIVE credentials for use in production.

The mobicred Test and Live API URLs are as follows:

TEST - https://test.mobicred.co.za/web_mcrtst/rest.w?

LIVE - https://live.mobicred.co.za/web_mcrliv/rest.w?

6 | P a g e

The offering of mobicred as a payment method involves incorporating three processes, namely:

Customer Applications – A merchant’s customer will need to apply for the mobicred product before

purchasing if they do not already have a mobicred account. The application process would be invoked either

by the customer visiting the mobicred.co.za site or by the customer clicking on an ‘apply now’ link on the

merchant checkout pages after selecting mobicred as a payment method. The merchant would redirect the

customer to a secure mobicred application URL in order for the customer to apply. After a filling out a short

questionnaire, the customer would either be approved or declined, and subsequently be redirected back to

the specified URL appended by the merchant to the application page redirect to continue with the purchase.

Customer Purchase Pre-Authorisations – Only customers who carry valid mobicred account credentials and

where their account has been completely verified by mobicred may use the product to purchase online.

There are 3 possible reasons why an account may not be verified:

1. The customer is new and has just completed the application process whereby their banking details

still need to be verified. This is not a real-time process and can take anywhere between 2 minutes

and 24 hours.

2. The customer is an existing mobicred customer and has changed their banking details. This will re-

initiate the banking details verification process.

3. The customer’s purchasing behaviour has triggered mobicred fraud checks and the account is being

reviewed.

After selecting mobicred as a payment option on the merchant’s secure checkout pages, the customer must

be asked to enter a mobicred username (email format) and password. The password must be hashed on

screen entry by the merchant and both the username and password may not be stored. The merchant must

then pass these credentials along with the details of the transaction to the mobicred API using the purCreate

call. If provided with a successful response, the merchant must capture a One Time PIN (OTP) from the

customer and submit this to the API referencing the original purchase request (purPreAuth).

A successful purchase pre-authorisation (approved OK) means that the merchant may confirm the order as

the funds have been reserved on the customer’s account. All approved transactions will be settled weekly

with the merchant.

7 | P a g e

Merchant Customer mobicred SMS Provider

Payment method page shown on checkout

Customer selects 'mobicred' & enters username and password

'purCreate'

OTP SMS request

SMS request response

'purCreate' response

OTP SMS sent to Customer's mobile

Customer enters OTP

'purPreAuth'

'purPreAuth' response

PreAuth receipt SMS request

SMS request response

PreAuth receipt page shown to Customer

PreAuth Receipt sent to Customer's mobile

A

Purchase Pre-Authorisation

Customer Purchase Updates – Should the customer require a refund on an approved pre-authorised

purchase transaction, the merchant may submit a ‘purRefund’ call to the mobicred API and the transaction

may be reversed. Both partial and full refunds are supported by mobicred.

In some extreme cases, mobicred may identify fraudulent purchasing activity on an account and may ask the

merchant to refund the transaction. This will be coordinated between the Operational teams of mobicred

and the participating merchant.

8 | P a g e

Merchant Customer mobicred SMS Provider

'purRefund'

Refund receipt SMS request

Refund receipt SMS request response

'purRefund' response

Refund receipt sent to Customer's mobile

Refund approved

'purPreAuth'

'purPreAuth' response

PreAuth receipt SMS request

SMS request response

PreAuth receipt page shown to Customer

PreAuth Receipt sent to Customer's mobile

Asynchronous Refund of an Approved Pre-Authorisation

2. Application Page Redirects
On full-page redirect of the customer from the merchant’s site to the mobicred product application page, 2

elements must be incorporated into the URL by the merchant, namely the merchant ID supplied by mobicred

and the URL to which the merchant wished the customer to be redirected back to on completion of the

application process.

For example:

https://live.mobicred.co.za/web_mcrliv/run.w?run=application&merchantId=xxxxx&returnUrl=xxxxxxx

Where NNNN must be replaced by the merchant ID assigned by mobicred to the merchant (provided on

signing up), and the bold URL is the URL to which the merchant would like the customer come back to e.g.

checkout page or homepage

It is strongly advised that the return URL is encoded by the merchant.

3. Product Interest Rate

To ensure that all references to the mobicred interest rate are used and displayed correctly on the

Merchant’s website, mobicred expose a getCurrentIntRate API. It is advised that the merchant call this API

once a day, preferably in the early morning, to ensure that their stored interest rate is up to date. Please see

the API section for more details.

9 | P a g e

4. Web Service Overview

4.1 What is a Web Service?

4.2 SSL Access

4.3 Building a Valid URL

4.4 Processing Responses

4.5 Processing XML with XPath

$.6 Processing JSON with Javascript

4.1 What is a Web Service?

The mobicred API provides these web services as an interface for requesting mobicred API data from external

services and using them within your Website to facilitate online purchases.

These web services use HTTP requests to specific URLs, passing URL parameters as arguments to the services.

Generally, these services return data in the HTTP request as either JSON or XML for parsing and/or processing

by your Website.

A typical Web Service request is generally of the following form:

http://live.mobicred.co.za/web_mcrliv/rest.w?rqDataMode=VAR/output&rqService=service¶m1=...

Where service indicates the particular service requested and output indicates the response format

(usually json or xml).

The following information describes some common practices useful for setting up your web service requests

and processing your web service responses.

4.2 SSL Access

You are required to access the mobicred API Web Services over HTTPS as these applications include sensitive

user data. To do so, change the protocol in your request URL to https as shown below:

https://live.mobicred.co.za/web_mcrliv/rest.w?rqDataMode=VAR/output&rqService=service¶m1=...

10 | P a g e

4.3 Building a valid URL

You may think that a "valid" URL is self-evident, but that's not quite the case. A URL entered within an

address bar in a browser, for example, may contain special characters (e.g."上海+中國"); the browser needs

to internally translate those characters into a different encoding before transmission. By the same token, any

code that generates or accepts UTF-8 input might treat URLs with UTF-8 characters as "valid", but would also

need to translate those characters before sending them out to a web server. This process is called URL-

encoding.

We need to translate special characters because all URLs need to conform to the syntax specified by the W3

Uniform Resource Identifier specification. In effect, this means that URLs must contain only a special subset of

ASCII characters: the familiar alphanumeric symbols, and some reserved characters for use as control

characters within URLs. The table below summarizes these characters:

Set Characters URL usage

Alphanumeric a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J
K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9

Text strings, scheme usage
(http), port (8080), etc.

Unreserved - _ . ~ Text strings

Reserved ! * ' () ; : @ & = + $, / ? % # [] Control characters and/or
Text Strings

When building a valid URL, you must ensure that it contains only those characters shown above. Conforming

a URL to use this set of characters generally leads to two issues, one of omission and one of substitution:

Characters that you wish to handle exist outside of the above set. For example, characters in foreign

languages such as 上海+中國 need to be encoded using the above characters. By popular convention, spaces

(which are not allowed within URLs) are often represented using the plus '+' character as well.

Characters exist within the above set as reserved characters, but need to be used literally. For example, ? is

used within URLs to indicate the beginning of the query string; if you wish to use the string "? and the

Mysterions," you'd need to encode the '?' character.

All characters to be URL-encoded are encoded using a '%' character and a two-character hex value

corresponding to their UTF-8 character. For example, 上海+中國 in UTF-8 would be URL-encoded

as %E4%B8%8A%E6%B5%B7%2B%E4%B8%AD%E5%9C%8B. The string ? and the Mysterians would be URL-

encoded as %3F+and+the+Mysterians.

http://en.wikipedia.org/wiki/URL_encoding
http://en.wikipedia.org/wiki/URL_encoding
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986

11 | P a g e

Converting a URL that you receive from user input is sometimes tricky. For example, a user may enter an

address as "5th&Main St." Generally, you should construct your URL from its parts, treating any user input as

literal characters.

Additionally, URLs are limited to 2048 characters for all web services. For most services, this character limit

will seldom be approached. However, note that certain services have several parameters that may result in

long URLs.

All supported methods are URL request, HTTP verbs: GET, POST. The mobicred system makes no distinction

between GET and POST – they can be used interchangeably (no need to use GET to fetch data and POST to

create data).

NB! Using GET or URL requests is great for testing and getting things working, however for security reasons

production servers should use the POST method which will ensure that all the parameter’s data is encrypted

over the HTTPS connection.

4.4 Processing Responses

As the exact format of individual responses with a web service request is not guaranteed (some elements

may be missing or in multiple locations), you should never assume that the format returned for any given

response will be the same for different queries. Instead, you should process the response and select

appropriate values via expressions. This section discusses how to extract these values dynamically from web

service responses.

The mobicred Web Services provide responses that are easy to understand and provide a number of specific

values. Generally, you will want to parse responses from the web service and extract only those values that

you require.

The parsing scheme you use depends on whether you are returning output in XML or JSON. JSON responses,

being already in the form of Javascript objects, may be processed within Javascript itself on the client; XML

responses should be processed using an XML processor and an XML query language to address elements

within the XML format. We use XPath in the following examples, as it is commonly supported in XML

processing libraries.

4.5 Processing XML with XPath

XML is a relatively mature structured information format used for data interchange. Although it is not as

lightweight as JSON, XML does provide more language support and more robust tools. Code for processing

XML in Java, for example, is built into the javax.xml packages.

When processing XML responses, you should use an appropriate query language for selecting nodes within

the XML document, rather than assume the elements reside at absolute positions within the XML

markup. XPath is a language syntax for uniquely describing nodes and elements within an XML document.

XPath expressions allow you to identify specific content within the XML response document.

http://http/www.w3.org/TR/xpath/
http://en.wikipedia.org/wiki/XPath

12 | P a g e

XPath Expressions

Some familiarity with XPath goes a long way towards developing a robust parsing scheme. This section will

focus on how elements within an XML document are addressed with XPath, allowing you to address multiple

elements and construct complex queries.

XPath uses expressions to select elements within an XML document, using a syntax similar to that used for

directory paths. These expressions identify elements within an XML document tree, which is a hierarchical

tree similar to that of a DOM. Generally, XPath expressions are greedy, indicating that they will match all

nodes which match the supplied criteria.

The following is an abstract XML to illustrate our examples:

<rqResponse>
 <rqAuthentication></rqAuthentication>
 <pcMCReference>mcr00009101<pcMCReference>
 <pcMerchantRequestID>000005<pcMerchantRequestID>
 <pdtDateTime>04/06/2013 23:58:03.161+02:00<pdtDateTime>
 <piResponseCode>1<piResponseCode>
 <pcStatus>Pending<pcStatus>
 <pcReason><pcReason>
 <pcRecCustomerMsg><pcRecCustomerMsg>
 <pcCustomField><pcCustomField>
 <rqErrorMessage></rqErrorMessage>
</rqResponse>

Node Selection in Expressions

XPath selections select nodes. The root node encompasses the entire document. You select this node using

the special expression "/". Note that the root node is not the top-level node of your XML document; actually,

it resides one level above this top-level element and includes it.

Element nodes represent the various elements within the XML document tree.

A <rqResponse> element, for example, represents the top-level element returned in our sample service

above. You select individual nodes either via absolute or relative paths, indicated by the presence or absence

of a leading "/" character.

Absolute path: the "/rqResponse/pcMCReference" expression selects all <pcMCReference> nodes that are

children of the <rqResponse> node. (Note that both of these elements descend from the root node "/".)

Relative path from the current context: the expression "pcMCReference" would match

any <pcMCReference> elements within the current context. Generally, you shouldn't have to worry about

context, as you're usually processing web service results via a single expression.

Either of these expressions may be augmented through addition of a wildcard path, indicated with a double-

slash ("//"). This wildcard indicates that zero or more elements may match in the intervening path. The XPath

expression "//address," for example, will match all nodes of that name in the current document. The

expression//viewport//lat would match all <lat> elements that can trace <viewport> as a parent.

13 | P a g e

By default, XPath expressions match all elements. You can restrict the expression to match a certain element

by providing a predicate, which is enclosed in square brackets ([]). The XPath expression

"/rqResponse/result[2] always returns the second result, for example.

XPath Expression
Type of
Expression

Selection

"/" Root node <rqResponse>
 <rqAuthentication></rqAuthentication>
 <pcMCReference>mcr00009101<pcMCReference>

<pcMerchantRequestID>000005<pcMerchantRequestID>
 <pdtDateTime>04/06/2013
23:58:03.161+02:00<pdtDateTime>
 <piResponseCode>1<piResponseCode>
 <pcStatus>Pending<pcStatus>
 <pcReason><pcReason>
 <pcRecCustomerMsg><pcRecCustomerMsg>
 <pcCustomField><pcCustomField>
 <rqErrorMessage></rqErrorMessage>
</rqResponse>

"/rqResponse/pcMCReference" Absolute Path <pcMCReference>mcr00009101<pcMCReference>

It is important to note that when selecting elements, you select nodes, not just the text within those objects.

Generally, you will want to iterate over all matched nodes and extract the text. You may also match text

nodes directly; see Text Nodes below.

Note that XPath supports attribute nodes as well; however, all mobicred web services serve elements

without attributes, so matching of attributes is not necessary.

Text Selection in Expressions

Text within an XML document is specified in XPath expressions via a text node operator. This operator "text()"

indicates extraction of text from the indicated node. For example, the XPath expression

"//formatted_address/text()" will return all text within <formatted_address> elements.

https://developers.google.com/maps/documentation/webservices/#Text

14 | P a g e

XPath Expression
Type of
Expression

Selection

"//text()" All text
nodes
(including
whitespace)

Mcr00009101
000005
04/06/2013 23:58:03.161+02:00
1
Pending

Alternatively, you may evaluate an expression and return a set of nodes and then iterate over that "node

set," extracting the text from each node. We use this approach in the example below.

For more information on XPath, consult the XPath W3C Specification.

Evaluating XPath in Java

Java has wide support for parsing XML and using XPath expressions within the javax.xml.xpath.* package. For

that reason, the sample code in this section uses Java to illustrate how to handle XML and parse data from

XML service responses.

To use XPath in your Java code, you will first need to instantiate an instance of an XPathFactory and

call newXPath() on that factory to create an XPath object. This object can then process passed XML and XPath

expressions using the evaluate() method.

When evaluating XPath expressions, make sure that you iterate over any possible "node sets" which may be

returned. Because these results are returned as DOM nodes in Java code, you should capture such multiple

values within a NodeList object and iterate over that object to extract any text or values from those nodes.

http://www.w3.org/TR/xpath/

15 | P a g e

The following code illustrates how to create an XPath object, assign it XML and an XPath expression, and

evaluate the expression to print out the relevant content.

import org.xml.sax.InputSource;
import org.w3c.dom.*;
import javax.xml.xpath.*;
import java.io.*;

public class SimpleParser {

 public static void main(String[] args) throws IOException {

 XPathFactory factory = XPathFactory.newInstance();

 XPath xpath = factory.newXPath();

 try {
 System.out.print("Web Service Parser 1.0\n");

 // In practice, you'd retrieve your XML via an HTTP request.
 // Here we simply access an existing file.
 File xmlFile = new File("XML_FILE");

 // The xpath evaluator requires the XML be in the format of an InputSource
 InputSource inputXml = new InputSource(new FileInputStream(xmlFile));

 // Because the evaluator may return multiple entries, we specify that the expression
 // return a NODESET and place the result in a NodeList.
 NodeList nodes = (NodeList) xpath.evaluate("XPATH_EXPRESSION", inputXml, XPathConstants.NODESET);

 // We can then iterate over the NodeList and extract the content via getTextContent().
 // NOTE: this will only return text for element nodes at the returned context.
 for (int i = 0, n = nodes.getLength(); i < n; i++) {
 String nodeString = nodes.item(i).getTextContent();
 System.out.print(nodeString);
 System.out.print("\n");
 }
 } catch (XPathExpressionException ex) {
 System.out.print("XPath Error");
 } catch (FileNotFoundException ex) {
 System.out.print("File Error");
 }
 }
}

16 | P a g e

4.6 Processing JSON with Javascript

JSON (Javascript Object Notation) has an obvious advantage over XML in that the response is lightweight.

Parsing such a result is trivial in JavaScript as the format is already a valid Javascript object. For example, to

extract the value of the 'formatted_address' keys within a JSON result object, simply access them using the

following code:

for (i = 0; i < myJSONResult.results.length; i++) {
 myAddress[i] = myJSONResult.results[i].formatted_address;
}

Note that because JSON may contain multiple values, it's wisest to iterate over the length of the results array

if you want to capture all possible values. In practice, you may wish to only return the first result (results[0]),

however.

Parsing JSON in other languages is only moderately more difficult. The following Python example initiates a

Geocoding web service request and displays all resultingformatted_address values to the user within an

array:

import simplejson, urllib

GEOCODE_BASE_URL = 'http://maps.googleapis.com/maps/api/geocode/json'

def geocode(address,sensor, **geo_args):
 geo_args.update({
 'address': address,
 'sensor': sensor
 })

 url = GEOCODE_BASE_URL + '?' + urllib.urlencode(geo_args)
 result = simplejson.load(urllib.urlopen(url))

 print simplejson.dumps([s['formatted_address'] for s in result['results']], indent=2)

if __name__ == '__main__':
 geocode(address="San+Francisco",sensor="false")

Output:

[
 "San Francisco, CA, USA"
]

17 | P a g e

5 mobicred API Calls

5.1 Purchase Create

5.2 Purchase OTP

5.3 Purchase Pre-Authorise

5.4 Purchase Cancel

5.5 Purchase Refund

5.6 Purchase Refund Reversal

5.7 Purchase Query

An example of the mobicred request URL format (purchase OTP) is shown below:

https://test.mobicred.co.za/web_mcrtst/rest.w?rqDataMode=VAR/JSON&rqAuthentication=user:test_merch

ant|pa55w0rd|GSMUS|%26login_company_obj%3d-1%26login_company_branch_obj%3d-

1%26process_date%3d2014/03/15&rqservice=ilDataService:purOTP&cMerchantID=1001&cMerchantKey=17

33540827&cMerchantRequestID=1001&cMCReference=20000000150

5.1 Purchase Create
First trigger to assess customer username and password and if adequate funds available to purchase item.

Purchase amount in reserved status subject to customer authorisation.

purCreate

Request
Format (Mandatory /
Optional)

Response
Format /
Description

cMerchantID 8 N characters (M) pcMCReference
11 N characters
unique for each mC
transaction

cMerchantKey system generated (M) pcMerchantRequestID echo from request

cMerchantRequestID
min 6 max 30 AN characters,
must be unique for each
request per MerchantID (M)

pdtDateTime
yyyymmdd
hh:mm:ss +hh:mm

cCustUsername
AN mC username, must be
valid email address (M)

piResponseCode See relevant table

cCustPasswd min 8 AN characters (M) pcStatus See relevant table

lAutoApprove Must be set to ‘True’ pcReason See relevant table

cOrderNo max 30 AN characters (O) pcRecCustomerMsg See relevant table

dAmount N with decimal place (M) pcCustomField echo from request

cCustomField AN 128 characters (O)

NOTE: Transactions in a Created OK state require a One Time PIN (OTP) to be approved. OTPs expire and

must be submitted within a certain period of time after generation (usually set to 10 minutes).

18 | P a g e

AutoApprove allows for auto authorization of the purchase transaction, if set to TRUE the purApprove API

will not be run.

5.2 Purchase OTP

Triggered to resend OTP to the customer for purchase pre-authorisation.

purOTP

Request Format (Mandatory / Optional) Response
Format /
Description

cMerchantID 8 N characters (M) pcMCReference echo from request

cMerchantKey system generated (M) pcMerchantRequestID echo from request

cMerchantRequestID
min 6 max 30 AN characters,
must be unique for each request
per MerchantID (M)

pdtDateTime
yyyymmdd
hh:mm:ss +hh:mm

cMCReference from purCreate response piResponseCode See relevant table

pcStatus See relevant table

 pcReason See relevant table

 pcRecCustomerMsg See relevant table

NOTE: There is a maximum amount of purOTP requests that can be sent for each MCReference after which a

‘Declined’ code 211 would be returned.

5.3 Purchase Pre-Authorise

Triggers a verification of the OTP (the customers confirmation of transaction) and if correct, it reduces the

account balance by the initial requested amount.

purPreAuth

19 | P a g e

Request Format (Mandatory / Optional) Response
Format /
Description

cMerchantID 8 N characters (M) pcMCReference echo from request

cMerchantKey system generated (M) pcMerchantRequestID echo from request

cMerchantRequestID
min 6 max 30 AN characters,
must be unique for each request
per MerchantID (M)

pdtDateTime
yyyymmdd
hh:mm:ss +hh:mm

cMCReference from purCreate response piResponseCode See relevant table

iOTP
6 N characters captured from
customer

pcStatus See relevant table

 pcReason See relevant table

 pcRecCustomerMsg See relevant table

5.4 Purchase Cancel

Should the merchant wish to fully cancel transaction before approval stage, or customer does not want to

proceed with order prior to approval stage purchase cancel must be triggered to reverse full amount of

pending purchase.

If autoapprove=false is used in a purchase’s purCreate call, then after purPreAuth either purCancel needs to

be triggered or purApprove to complete the steps

purCancel

Request Format (Mandatory / Optional) Response Format / Description

cMerchantID 8 N characters (M) pcMCReference echo from request

cMerchantKey system generated (M) pcMerchantRequestID echo from request

cMerchantRequestID

min 6 max 30 AN characters,

must be unique for each

request per MerchantID (M)

pdtDateTime
yyyymmdd hh:mm:ss

+hh:mm

cMCReference from purCreate response (M) piResponseCode See relevant table

cMerchantReason
3 A characters (O) - See relevant

table
pcStatus See relevant table

 pcReason See relevant table

 pcRecCustomerMsg See relevant table

5.5 Purchase Approve

When merchant is ready to ship goods this trigger will fully approve transaction amount (ready for merchant

settlement).

20 | P a g e

If autoapprove=false is used in a purchase’s purCreate call, then after purPreAuth either purCancel needs to

be triggered or purApprove to complete the steps

AutoApprove allows for auto authorization of the purchase transaction, if set to TRUE the purApprove API

will not be run.

purApprove

Request Format (Mandatory / Optional) Response Format / Description

cMerchantID 8 N characters (M) pcMCReference echo from request

cMerchantKey system generated (M) pcMerchantRequestID echo from request

cMerchantRequestID

min 6 max 30 AN characters,

must be unique for each

request per MerchantID (M)

pdtDateTime
yyyymmdd hh:mm:ss

+hh:mm

cMCReference from purCreate response piResponseCode See relevant table

 pcStatus See relevant table

 pcReason See relevant table

 pcRecCustomerMsg See relevant table

5.6 Purchase Refund

This is triggered to either partially or fully refund a previously fully approved purchase. purCancel is used to

cancel a purchase that is not yet fully approved.

purRefund

Request Format (Mandatory / Optional) Response
Format /
Description

cMerchantID 8 N characters (M) pcMCReference New MCReference

21 | P a g e

for Refund

cMerchantKey system generated (M) pcMerchantRequestID from request

cMerchantRequestID
min 6 max 30 AN characters,
must be unique for each request
per MerchantID (M)

pcRefundReference
MCReference from
request

cMCReference from purCreate response (M) pdtDateTime
yyyymmdd
hh:mm:ss +hh:mm

dAmount N with decimal place (M) piResponseCode See relevant table

cMerchantReason
3 A characters (O) - See relevant
table

pcStatus See relevant table

 pcReason See relevant table

 pcRecCustomerMsg See relevant table

5.7 Purchase Refund Reversal

This is triggered to be able to either partially or fully reverse a refund incorrectly processed.

purRefundReverse

Request Format (Mandatory / Optional) Response
Format /
Description

cMerchantID 8 N characters (M) pcMCReference
New MCReference
for Refund Reversal

cMerchantKey system generated (M) pcMerchantRequestID from request

cMerchantRequestID
min 6 max 30 AN characters,
must be unique for each request
per MerchantID (M)

pcRefundReference
MCReference from
request

cMCReference from purRefund response (M) pdtDateTime
yyyymmdd
hh:mm:ss +hh:mm

dAmount N with decimal place (M) piResponseCode See relevant table

cMerchantReason
3 A characters (O) - See relevant
table

pcStatus See relevant table

 pcReason See relevant table

 pcRecCustomerMsg See relevant table

5.8 Purchase Query

This is triggered to find out the state of a purchase transaction. It is merely an information request and can

be used in case of communication failures.

purQuery

Request
Format (Mandatory /
Optional)

Response Format / Description

cMerchantID 8 N characters (M) pcMCReference echo from request

22 | P a g e

cMerchantKey system generated (M) pcPurchaseState

Current state of transaction (i.e
Created OK, Pre-Authorised OK,
Approved OK, Paid Up OK, Declined
OK, Cancelled OK)

cMCReference
from purCreate response
(M)

pdtDateTimeChanged
date time TZ transaction entered
current state

 pdTranAmt
Amount relevant to the transaction
queried

 pdPurchaseBal Current purchase balance

 piResponseCode See relevant table

 pcStatus See relevant table

 pcReason See relevant table

 pcRecCustomerMsg See relevant table

5.9 Get Current Interest Rate

It is recommended that this API be called once at the beginning of every day to confirm the interest rate of

the mobicred product.

getCurrentIntRate

Request
Format (Mandatory /
Optional)

Response Format / Description

cMerchantID 8 N characters (M) pcIntRate N with 2 decimal places

cMerchantKey system generated (M) piResponseCode See relevant table

 from purCreate response
(M)

pcStatus See relevant table

 pcReason See relevant table

 pcRecCustomerMsg See relevant table

23 | P a g e

5.10 Web Hook

This API can be used to automate triggering of the first purchase that the customer had in their basket when

they applied for mobicred from the merchant’s site.

In order to use this functionality the following additional elements need to be appended to the redirect URL

(refer to 2. Application Page Redirects):

• &callbackURL=value

o (the encoded URL the merchant wants the web hook sent to)

• &autoApprove=value

o (optional, will default to true)

• &orderNo=value

o (basket ID)

• &amount=value

o (purchase amount)

The above information is stored linked to the customer after submitting the first page of the application.

Once the application is complete, the mobicred call center follow the process of vetting that customer.

If the customer passes the vetting then the mobicred system changes the account’s situation and sends an

SMS to the customer.

At that point if all the information exists that is required by the web hook then internally the mobicred

system does the purCreate to create the transaction on the customer’s account.

If that is successful the mobicred system generates an OTP linked to the transaction (no OTP is sent to the

customer).

Then the web hook call is sent to the callbackURL telling the merchant they can continue the automated

transaction process using the data provided.

This will be an HTTP POST with a JSON payload.

The information that is sent to the callback URL:

• pcMCReference

o (mobicred transaction number to be used in subsequent purchase API calls)

• iOTP

o (to be used in subsequent purPreAuth, OTP expires after 30 min)

• lAutoApprove

o (indicates whether merchant must do purPreAuth and purApprove separately or not)

• cOrderNo

o (echo what we stored at application)

• dAmount

o (echo what we stored at application)

24 | P a g e

25 | P a g e

The raw JSON data sent to the callbackURL is as follows:

{

 "cMCReference": "2000000001",

 "iOTP": 1234,

 "lAutoApprove": true,

 "cOrderNo": "1",

 "dAmount": 100.12

}

The response from the callbackURL should be in the following format:

Success:

{

 "cStatus": "SUCCESS",

 "cErrorMessage": “”

}

Error:

{

 "cStatus": "ERROR",

 "cErrorMessage": “Basket ID not found for Order No”

}

The mobicred system will simply be logging the response, there isn’t a different outcome based on success or

error.

On the merchant’s side they will use the data sent in the web hook to decide whether to send a subsequent

purPreAuth (using iOTP provided in webhook data for security) or purCancel call to mobicred. This would be

based on whether the basket, purchase amount and stock availability are still valid etc.

After the merchant triggers the appropriate purchase API, the customer will get sent an SMS letting them

know what is happening with their first purchase at the merchant.

26 | P a g e

6 Code Samples

6.6 PHP

<?php
 Protected function mcrAPI($api = false, $parameters = false, $dataMode = 'json',
$test = true){
 $curl = curl_init();
 $url = 'https://'.($test ? 'test' : 'live').'.mobicred.co.za/web_mcr'.($test
? 'tst' : 'liv').'/rest.w';

 curl_setopt($curl,CURLOPT_POST, true);
 if (!$api || !$parameters || $this -> username == '' || $this -> password ==
'') return false;

 $dataMode_param ='VAR/'.($dataMode == 'xml' ? 'XML' : 'JSON') ;
 $service_param = 'ilDataService:'.$api;
 $authentication_param = "user:{$this -> username}|{$this ->
password}|GSMUS|&login_company_obj=-1&login_company_branch_obj=-
1&process_date=".date('Y/m/d');

 $data = '?rqDataMode=' . urlencode($dataMode_param) .
 '&rqService=' . urlencode($service_param) .
 '&rqAuthentication=' . urlencode($authentication_param);

 foreach($parameters as $key=>$value){
 $parameters_str .= '&' . $key . '=' . urlencode($value);
 }

 $link = $url.$data.$parameters_str;

 curl_setopt_array($curl,array(
 CURLOPT_URL => $link,
 CURLOPT_RETURNTRANSFER => true,
 CURLOPT_ENCODING => "",
 CURLOPT_MAXREDIRS => 10,
 CURLOPT_TIMEOUT => 30,
 CURLOPT_HTTP_VERDION =>
CURL_HTTP_VERSION_1_1,
 CURLOPT_CUSTOMREQUEST => "POST"
)
);

 $response = curl_exec($curl);
 $err = curl_error($curl);
 curl_close($curl);

 $response = json_decode($response);

 if ($err) {
 $this->log('cURL Error: '. $err . PHP_EOL);

27 | P a g e

 }

 return $response->rqResponse;
 }

?>

6.7 .NET

using System;

using System.Net.Http;

using System.Net.Http.Headers;

using System.Threading.Tasks;

 class PurResult

 {

 public string pcMCReference { get; set; }

 public string pcMerchantRequestID { get; set; }

 public DateTime pdtDateTime { get; set; }

 public int piResponseCode { get; set; }

 public string pcStatus { get; set; }

 public string pcReason { get; set; }

 public string pcRecCustomerMsg { get; set; }

 public string pcCustomFielI:\tmp\jameelm\.Net purCreate REST consumption.txtd { get; set; }

 }

 class Program

 {

 // Creating authentication variables

 public string rqDataMode = "VAR/JSON",

 usernameAndPassword = "redwood|password123|GSMUS|",

 loginCompany = "-1",

28 | P a g e

 loginCompanyBranch = "-1",

 processDate = "2013/07/22";

 // Creating input parameters

 public string rqservice = "ilDataService:purCreate",

 cMerchantID = "1001",

 cMerchantKey = "1733700827",

 cMerchantRequestID = "11111",

 cCustUsername = "abrah@mweb.com",

 cCustPasswd = "fkD02",

 lAutoApprove = "true",

 cOrderNo = "1",

 dAmount = "100",

 cCustomField = "test";

 // These parameters (input) are used for testing only

 public string testrqservice = "ilDataService:purQuery",

 testcMerchantID = "1001",

 testcMerchantKey = "1733700827",

 testcMCReference = "20000000358";

 // Testing parameters end

 string restURL = "https://test.mobicred.co.za/web_mcrtst/rest.w?rqDataMode="

 + rqDataMode

 + "&rqAuthentication=User:" + usernameAndPassword

 + "|%26login_company_obj%3D"+ loginCompany

 + "%26login_company_branch_obj%3D" + loginCompanyBranch

 + "%26process_date%3D" + processDate

 + "&rqservice=" + rqservice

 + "&cMerchantID=" + cMerchantID

 + "&cMerchantKey=" + cMerchantKey

29 | P a g e

 + "&cMerchantRequestID=" + cMerchantRequestID

 + "&cCustUsername=" + cCustUsername

 + "&cCustPasswd=" + cCustPasswd

 + "&lAutoApprove=" + lAutoApprove

 + "&cOrderNo=" + cOrderNo

 + "&dAmount=" + dAmount

 + "&cCustomField=" + cCustomField ;

 static void Main()

 {

 RunAsync().Wait();

 }

 static async Task RunAsync()

 {

 using (var client = new HttpClient())

 {

 client.BaseAddress = new Uri(restURL);

 // HTTP GET

 HttpResponseMessage response = await client.GetAsync();

 if (response.IsSuccessStatusCode)

 {

 PurResult purResult = await response.Content.ReadAsAsync<PurResult>();

 Console.WriteLine("{0}\t${1}\t{2}\t{3}\t{4}\t{5}\t{6}\t{7}", purResult.pcMCReference,

purResult.pcMerchantRequestID, purResult.pdtDateTime, purResult.piResponseCode, purResult.pcStatus,

purResult.pcReason, purResult.pcRecCustomerMsg, purResult.pcCustomField);

 }

 }

 }

 }

30 | P a g e

6.8 JAVA CODE

// Call rest service and return JSON object as String
 private String sendAndReceiveJSON() {

 HttpURLConnection conn = null;

 try {

 /* Notes
 * %26 = &
 * %3d = :
 Notes end */

 // Creating authentication variables
 String rqDataMode = "VAR/JSON",
 usernameAndPassword = "redwood|password123|GSMUS|",
 loginCompany = "-1",
 loginCompanyBranch = "-1",
 processDate = "2013/07/22";

 // Creating input parameters
 String rqservice = "ilDataService:purCreate",
 cMerchantID = "1001",
 cMerchantKey = "1733700827",
 cMerchantRequestID = "11111",
 cCustUsername = "abrah@mweb.com",
 cCustPasswd = "fkD02",
 lAutoApprove = "true",
 cOrderNo = "1",
 dAmount = "100",
 cCustomField = "test";

 // These parameters (input) are used for testing only
 String testrqservice = "ilDataService:purQuery",
 testcMerchantID = "1001",
 testcMerchantKey = "1733700827",
 testcMCReference = "20000000358";
 // Testing parameters end

 // Creating the string for the url
 String urlString = "https://test.mobicred.co.za/web_mcrtst/rest.w?";

 // Creating the StringBuilder to build the entire string
 StringBuilder stringBuilder = new StringBuilder(urlString);

 // Filling in the authentication parameters
 stringBuilder.append("rqDataMode=");
 stringBuilder.append(rqDataMode);
 stringBuilder.append("&");
 stringBuilder.append("rqAuthentication=user:");
 stringBuilder.append(usernameAndPassword);
 stringBuilder.append("%26");
 stringBuilder.append("login_company_obj");

31 | P a g e

 stringBuilder.append("%3d");
 stringBuilder.append(loginCompany);
 stringBuilder.append("%26");
 stringBuilder.append("login_company_branch_obj");
 stringBuilder.append("%3d");
 stringBuilder.append(loginCompanyBranch);
 stringBuilder.append("%26");
 stringBuilder.append("process_date");
 stringBuilder.append("%3d");
 stringBuilder.append(processDate);
 stringBuilder.append("&");

 // Filling in the input parameters
 stringBuilder.append("rqservice=");
 stringBuilder.append(rqservice);
 stringBuilder.append("&");
 stringBuilder.append("cMerchantID=");
 stringBuilder.append(cMerchantID);
 stringBuilder.append("&");
 stringBuilder.append("cMerchantKey=");
 stringBuilder.append(cMerchantKey);
 stringBuilder.append("&");
 stringBuilder.append("cMerchantRequestID=");
 stringBuilder.append(cMerchantRequestID);
 stringBuilder.append("cMCReference=");
 stringBuilder.append("&");
 stringBuilder.append("cCustUsername=");
 stringBuilder.append(cCustUsername);
 stringBuilder.append("&");
 stringBuilder.append("cCustPasswd=");
 stringBuilder.append(cCustPasswd);
 stringBuilder.append("&");
 stringBuilder.append("lAutoApprove=");
 stringBuilder.append(lAutoApprove);
 stringBuilder.append("&");
 stringBuilder.append("cOrderNo=");
 stringBuilder.append(cOrderNo);
 stringBuilder.append("&");
 stringBuilder.append("dAmount=");
 stringBuilder.append(dAmount);
 stringBuilder.append("&");
 stringBuilder.append("cCustomField=");
 stringBuilder.append(cCustomField);

 // The actual URL
// System.out.println(stringBuilder.toString());
 URL url = new URL(stringBuilder.toString());

 // Begin sending
 conn = (HttpURLConnection) url.openConnection();
 conn.setRequestMethod("GET");
 conn.setRequestProperty("Accept", "application/json");

 if (conn.getResponseCode() != 200) {
 throw new RuntimeException("Failed : HTTP error code : "

32 | P a g e

 + conn.getResponseCode());
 }

 BufferedReader br = new BufferedReader(new InputStreamReader(
 (conn.getInputStream())));

 String output;
 StringBuilder jsonReponseStringBuilder = new StringBuilder();
 int lineCount = 0;

 while ((output = br.readLine()) != null) {
 jsonReponseStringBuilder.append(output);

 lineCount++;
 if (lineCount > 1) {
 jsonReponseStringBuilder.append("\n");
 }
 }

 return jsonReponseStringBuilder.toString();

 } catch (MalformedURLException e) {
 System.out.println("URL error: MalformedURLException\n");
 System.out.println(e.getMessage());

 } catch (IOException e) {
 System.out.println("IO error: IOException\n");
 System.out.println(e.getMessage());

 } finally {
 if (conn != null) {
 conn.disconnect();
 }
 }

 return null;
 }

33 | P a g e

7 Service Codes

Status Code Reason Notes

Success 0 “”
Used in purQuery (Data request not a
command/action)

Pending 001 Created OK

Pending 002 OTP Sent OK

Pending 003 Pre-Authorised OK - Account NOT verified

Pending 004 Pre-Authorised OK - Account verified

Approved 101 Purchase Approved OK

Approved 102 Purchase Cancelled OK

Approved 103 Purchase Refunded OK

Declined 201 Invalid Username

Declined 202 Incorrect Password

Declined 203 Customer account not found

Declined 204 Account Requires Verification
Customer account is undergoing
verification process

Declined 206 Account in Arrears

Declined 207 Insufficient Funds

Declined 208 OTP Incorrect

Declined 209 OTP Expired
Each OTP has a limited time to live, usually
around 15 minutes

Declined 210 Maximum OTP incorrect attempts

Declined 211 Maximum OTP resend requests reached

Error 0 Error message
Used in purQuery (Data request not a
command/action)

Error 301 MerchantID cannot be blank

Error 302 MerchantID not found

Error 303 MerchantID disabled

Error 304 MerchantKey cannot be blank

Error 305 MerchantKey incorrect

Error 306 MerchantRequestID cannot be blank

Error 307 Duplicate MerchantRequestID

Error 308 Error saving MerchantRequestID

Error 309 Amount cannot be blank

Error 310 MerchantID not enabled for autocapture

Error 311 Effective product transaction not found

34 | P a g e

Error 312 OTP not sent

Error 313 MCReference not valid

Error 314
Customer account record not found for
transaction

Error 315 Customer record not found for transaction

Error 316 OTP not required

Error 317 Error Posting transaction to GL

Error 318 User login has insufficient privileges

Error 319 Cannot refund more than purchase balance

Error 320 Invalid Merchant IP Address

Error 401 Purchase is in created state

Error 403 Purchase is in approved state

Error 405 Purchase in refunded state

Error 406 Purchase in declined state

Error 407 Purchase in an unknown state

MerchantReason Description

FRD Suspected Fraud

RTN Goods returned

NST No Stock

CAN Customer cancelled order

DGG Damaged Goods

